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A B S T R A C T   

Herein, rare earth Eu3+-doped NiFe2O4 (x = 0.00, 0.04, 0.08, 0.12) nanoferrites are prepared using the sol–gel 
auto combustion method. The effect of Eu3+ doped NiFe2O4 on the structural, morphological, thermal, magnetic, 
and dielectric properties of NiFe2O4 is observed. XRD patterns of samples confirm that samples x  = 0.00, 0.04, 
and 0.08 possess a single-phase FCC structure with a space group of Fd3m, whereas the sample x  = 0.12 exhibits 
secondary phase EuFeO3 formation at higher Eu3+ concentrations. The lattice constant (ac) and cell volume 
increase with increasing Eu content based on XRD analysis. Furthermore, TGA analysis reveals thermal 
decomposition and weight loss in pure and doped materials. According to the FESEM analysis, the addition of 
Eu3+ results in nanoparticles (NPs) with an average grain size of 220–250 nm, and the EDAX spectrum indicates 
the presence of Eu, Ni, Fe, and O, as confirmed through elemental mapping. Additionally, room-temperature 
magnetic hysteresis curves show clearly defined soft FM behavior for all prepared NPs, with saturation 
magnetization (Ms) values in the range of 48.42–––43.15 emu/g and remnant magnetization (Mr) in the range of 
32.64–––23.65 emu/g. However, the overall coercivity increases (90–––140 Oe) by substituting Eu3+ ions at the 
Fe3+ site. Furthermore, all the samples’ dielectric constants (ε’) are high at low frequencies and gradually 
decrease as the frequency increases, there by confirming Koop’s theory. Moreover, owing to the decreased 
hopping rate for Fe3+ at the octahedral sites in the doped NPs, the dielectric constant (ε’) and loss factor (tan δ) 
both decrease with the substitution of Eu3+. Hence, the lower tan δ values indicate that Eu3+-doped NiFe2O4 NPs 
are appropriate for high-frequency microwave device applications.   

1. Introduction 

Spinel ferrites (MFe2O4, where ‘M’ is any divalent metal ion) have 
long been the focus of research because of their technological and sci
entific applications in the fields of electronic devices, magnetic mate
rials, and optical devices, as well as in electrochemical science and 
technology, ferrofluids, synthetic biology, and high-frequency storage 
systems [1,2]. Additionally, the potential use of MFe2O4 compounds as 
electrode materials in Li-ion batteries and solid oxide fuel cells has 
recently received considerable attention [3–5]. These materials exhibit 
unique properties, such as large DC electrical resistivity, large saturation 

magnetization, and high permeability at high frequencies, which are 
ideal for application in magnetic materials and electronic devices [6,7]. 
The structural formula of these ferrites is MFe2O4, where M is a divalent 
metal ion derived from Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+ or the 
composition of these elements. Other ions that can be incorporated into 
the spinel lattice include Li+, Mg2+, Cr3+, Ti4+, and Sb5+. These metal 
ions have also been widely used as transformer cores in electronic ap
plications owing to their high resistivity and soft FM nature [7]. Ac
cording to the composition, the spinel structure of the MFe2O4 family 
typically has a lattice parameter (ac) of 8.30–8.50 Å. Additionally, the 
unit cell can incorporate metal ions into 64 possible tetrahedral (or A) 
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and 32 possible octahedral (or B) interstices or sites [8]. Here, metal 
cations were present at only 8B and 16 A sites. Because of magnetic 
interactions, two nearby magnetic ions on the B-site are connected in a 
parallel manner (ferromagnet (FM)), as compared with the much larger 
antiparallel (antiferromagnet (AFM)) coupling between the magnetic 
ion on the A-site and the ions at the B-sites. Ferrimagnetism (FI), the net 
magnetic moment (μB) in a magnetic material with dominant magnetic 
interaction in AFM, results from two ions antiparallel coupled to each 
magnetic ion on the A site [9,10]. 

Among the ferrite family, centrosymmetric magnetic nanophase 
NiFe2O4 (NFO) is a well-known material that has received considerable 
attention owing to its unique inverse spinel structure, soft FM nature, 
and electric properties. The ductility and hardness of transition metal 
oxide mixed with ferrite materials render it useful in aerospace tech
nology, and it has a wide range of technically outstanding potential 
applications in electronic devices, magnetic fluids, organic synthesis, 
microwave adsorbents, smart tape and disc recordings, magnetic re
frigerators, magnetic levitation system, magnetic drug delivery, and 
magnetic fluids. [10,11]. Ferrite has an FCC structure, in which Fe3+

ions are equally distributed between the A and B positions, whereas Ni2+

ions occupy only the B site, with the spinel structure corresponding 
predominantly to the Fd-3 m space group. Additionally, it has a high 
Curie temperature, TC, of approximately 558 ◦C, modest saturation 
magnetization value, MS, (approximately 56 emu.g− 1), high perme
ability (1.26–7.54 104H/m), high electrical resistivity (7 × 108 Ω. m), 
and low loss factor (>1) [12–14]. However, the preparation technique, 
particle size and surface morphology, processing atmosphere, and cation 
substitution in the host material for Fe2+/Fe3+ ions have a significant 
impact on the structural, dielectric, and magnetic properties of NFO 
[15,16]. In addition, incorporating suitable elements at the Ni/Fe site 
has been found to be beneficial for fine-tuning the magnetic and elec
trical properties, and the addition of rare earth elements (REE, such as 
La3+, Sm3+, Gd3+, Dy3+, Yb3+, Er3+, Tb3+, and Ce3+) consistently in
fluences the nature [17–20]. 

In addition, numerous researchers have investigated how REE ion 
replacement affects the magnetic characteristics of ferrite materials, 
particularly in light of the use of these materials in magneto–optical 
(MO) storage, MO sensors, and hyperthermia therapy [21]. The addition 
of REE ions to Ni/Fe ferrite results in significant changes in the results, 
such as lattice distortion and structural disorder, thereby allowing the 
tuning of the electrical, magnetic, and dielectric properties of the ma
terial composition [22]. Consequently, the structural, magnetic, and 
dielectric properties are assumed to change significantly when a mod
erate amount of REE ions is substituted for Fe3+ ions. Here, to control the 
magnetic transition temperature between the superparamagnetic (SPM) 
and FM phases in nanoparticles (NPs), μB is methodically varied by the 
successive filling of electrons into 4f shells and the potent influence of 
spin–orbital (3d–4f) coupling, which all affect the structure and mag
netic properties [23]. 

Numerous studies have been conducted to better understand the 
effects of REE doping on the physical, structural, morphological, and 
magnetic properties of ferrite materials. Given that REE ions have un
paired 4f electrons and strong spin–orbit coupling, adding them to the 
spinel ferrite crystal structure causes 3d–4f coupling, which can change 
the spectral, structural, magnetic, and electrical properties of MFe2O4 
[23]. In accordance with these reports, Almessiere et al. reported the 
substitution of higher Dy3+ ionic radii at a lower Fe3+ ion radii site in 
NFO; this strengthened the super-exchange interaction between NPs and 
improved the magnetic properties, including remanence (Mr), coercivity 
(HC), and μB [24]. Similarly, the author claimed that the substitution of 
Nb3+ at the Fe3+ site of CoFe2O4 (CFO) results in FM behavior at room 
temperature (RT), increases in MS (44.45–49.40 emu. g− 1) and Mr 
(12.16–17.90), and decreases in HC with Nb3+ [24,25]. Similarly, Zubair 
et al. reported enhanced magnetic properties through the substitution of 
Eu3+ ions using the co-precipitation method. This addition in CoFe2O4 
led to ferrimagnetic behavior, variations in the anisotropy constant, and 

changes in coercivity [26]. Furthermore, the antibacterial activity of 
REE of Ce3+ in the ferrite material of CFO at the Co site is enhanced, and 
the magnetic properties of the material are altered [27]. S. Ravi Kumar 
et al. reported that the bi-metallic combination of Co0.5Ni0.5Fe2O4 ma
terial with Nd3+ at Fe3+ site improved the DC resistivity properties in 
addition to MS [28]. Furthermore, Akhtar et al. reported graphene-based 
NFO (G/NFO) with REE’s (Yb3+, Gd3+, and Sm3+) dopants and G/NFO 
with REE’s(3+) enhanced the MS from 11.5 to 46.2 emu.g− 1 for com
posite materials. Several studies have reported that replacing certain 
metal ions with rare-earth elements can improve their structural and 
magnetic properties [29]. The electromagnetic properties of MFe2O4 
materials are affected by the types, sizes, and oxidation states of the ions, 
as well as how they are distributed between A and B sites. 

In this study, Eu3+- doped NFO, a nonmagnetic material with an iron 
vacancy at the Fe3+ site, is investigated. The addition of trivalent rare 
earth Eu3+ cations result in Fe3+– REE3+ interactions, which may result 
in a change in the dielectric and magnetic characteristics. Herein, Eu3+

atoms are systematically introduced into the Fe2+ site, and materials are 
developed using the sol–gel auto combustion synthesis method to study 
the structural, morphological, dielectric, and magnetic properties of 
NFO. By characterizing these aspects, we aim to gain a detailed under
standing of the way the introduction of Eu3+ ions influence the material 
magnetic properties, providing insights that can have implications for 
various applications. 

2. Experimental procedure 

2.1. Synthesis process 

Analytical grade Nickel nitrate (Ni (NO3)2⋅6H2O), Iron nitrate (Fe 
(NO3)3⋅9H2O), and Europium nitrate (Eu (NO3)2⋅5H2O with 99.99 % 
purity) chemicals were purchased from Sigma Aldrich. The sol–gel auto 
combustion method was used to prepare NiEuxFe2-xO4, where x  = 0.00, 
0.04, 0.08, 0.12 NPs. Further, Ni (NO3)2⋅6H2O and Fe (NO3)3⋅9H2O were 
dissolved in deionized water in a ratio of 1:2 M and stirred separately for 
20 min. Finally, the solution was gradually mixed with an aqueous so
lution of citric acid acted as a combustion agent (C6H8O7) and heated to 
80 ◦C while stirring. Following ignition, the ash product was heated to 
100 ◦C to evaporate excess water. To form pure-phase crystals, the 
finished products were annealed for 2 h at 800 ◦C with a rate of 7 ◦C/ 
min. The synthesized materials of NiEuxFe2-xO4, where x  = 0.00, 0.04, 
0.08, 0.12 NPs referred to as Eu-0, Eu-4, Eu-8, and Eu-12, respectively. 

2.2. Characterization Technique 

Powder X-ray diffraction (XRD) was performed using a Rigaku 
Smart-Lab XRD instrument with Cu K radiation operating at 40 kV and 
30 mA, and field emission scanning electron microscopy (FESEM, Zeiss 
Ultra 55) was employed for morphological analyses. Further, thermog
ravimetric analysis (SII TG/DTA 6200 EXSTAR) was performed in a 
nitrogen atmosphere from 25 to 1000 ◦C at a heating rate of 5 ◦C/min to 
study the stability and weight loss trends of the samples at these tem
peratures. Using a magnetic property measurement device (Quantum 
Design, MPMS 3), isothermal magnetization was measured at an applied 
magnetic field of 2.5 T, and the thermomagnetic properties were 
investigated at zero-field cooling and field cooling between 300 K and 2 
K in the helium temperature range. To conduct the dielectric analysis, a 
programmable precision LCR bridge (Key sight: E4980A) was utilized in 
the frequency range ranging from 100 Hz to 2 MHz at RT, and a highly 
conductive layer of silver was placed on both sides of the pellet (13 mm 
× 1.2 mm) to enhance the ohmic contact of the materials. 

3. Results and discussion 

Fig. 1 shows the Rietveld refinement fit performed using the FULL
PROF program to obtain the structural parameters of the Eu-doped 
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NiFe2O4 NPs. The observed 2ϴ values were 18.75◦, 30.66◦, 35.90◦, 
37.53◦, 43.79◦, 54.09◦, 57.72◦, and 63.43◦, respectively, tus confirming 
the single-phase, FCC structure with a space group of Fd3m; they are in 
good agreement with the values on the reference JCPDS card no: 86–226 
[9,10]. Evidently, with increasing Eu3+ substitution (Eu = 12) in pure 
spinel ferrite, the secondary phase of EuFeO3 was observed at the 
maximum substitution of Eu, similar to the observations reported by 
Zubair et al. regarding the secondary phase of EuFeO3 [26]. 

The secondary phase of EuFeO3 is found at 2Θ = 33.3◦ with miler 
indices of (002) and is confirmed by the ICSD collection code of 189728. 
As the percentage of Eu3+ in the pure spinel lattice increases, the 
divergence from a single cubic phase becomes visible with the formation 
of secondary phase peaks containing a negligible amount of ortho 
(EuFeO3) phase. The amount and type of dopant (Eu3+) utilized de
termines the formation of secondary phases during the sintering tech
nique. As a result, small amounts of Eu3 + ions added to the nickel 
ferrite lattice can affect both the size of the spinel matrix and the phase 
composition. Evidently, the ionic radius of Eu3+ had a significant impact 
in the formation of the EuFeO3 phase in NiFe2-xEuxO4 samples. Eu3+ ions 
were greater (1.07) compared with the Fe3+ ions (0.67) [26,30]. 
Furthermore, the amount of Fe3+ ions that can be replaced by Eu3+ at 
the octahedral site of the spinel system. This implies that excess Eu3+

forms the Eu2O3 phase as an impurity on the grain boundaries. The high 
intensity peak of the reflection plane (311) shifted toward the low 
diffraction angle with increasing Eu content owing to the internal stress 
produced by the distribution of dopant cations [31]. The structural pa
rameters of the pure and Eu3+ doped NFO sample were calculated using 
the following formulae [14]. 

D = kλ/(β cosθ),(1) 

a = dhkl

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
h2 + k2 + l2

√
, (2)  

v = a3, (3)  

ρx =
8M
Nv3, (4)  

LA =
̅̅̅
3

√ a
4
, (5)  

LB =
̅̅̅
2

√ a
4
, (6)  

where D represents the average crystallite size in nanometers; k repre
sents the shape factor, with a value 0.94; β represents FWHM; λ denotes 
the wavelength of X-rays used; ϴ is for the Bragg’s diffraction angle; ac is 
the lattice constant; d is the interplanar spacing; h, k, and l are the miller 
indices; v is volume of the unit cell; M is the molecular mass; and N is the 
Avogadro’s number. The typical crystallite size of the samples was 
observed in the range of 29–33 nm. As the Eu content increased, the 
tensile strain increased. The presence of Eu3+ ions in the samples, which 
are larger in size compared with Fe3+ ions, was thought to increase the 
tensile strain with Eu concentration [32]. Eu3+ ions replaced the smaller 
Fe3+ ions, thereby leading to an increase in ac from 8.26 to 8.30 Å and 
cell volume from 564.4 to 573.3 Å3. Owing to the substitution of Eu3+

ions, the X-ray density increased from 5.42 to 5.46 g/cm3. With higher 
Eu concentrations, the hopping length of A-sites and B-sites increased 
because the charge carriers required more energy to migrate between 
cationic site, thereby decreasing the conductivity [14]. The fitting pa
rameters goodness-of-fit (χ2), weighted profile reliability (Rwp), and 
profile reliability index (Rp) were used herein to analyze the re
finement’s accuracy (Table 1). The observed and calculated diffraction 
patterns were found to have a strong relationship, thus indicating that 
the goodness of fit (χ2) was less than 10 %. 

In the first phase, weight loss was attributed to the decomposition 
and oxidation of the sample contents at 500C. Here. the phase involved 
the crystallization of spinel ferrite. These peaks indicate the processes of 
crystallization and decomposition. The results of thermogravimetric 
examination at 5 ◦C/min in nitrogen to evaluate the thermal behavior 

Fig. 1. Rietveld refinement fit of Eu-doped NFO NPs XRD patterns (a-d) Eu = 0––12.  
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and stability of pure and Eu3+-doped NFO NPs is shown in Fig. 2. The 
sample shown in Fig. 2(a) demonstrates that thermal decomposition 
occurred in two distinct steps. The initial 0.1 % weight loss step occurred 
between 25 and 400 ◦C and was associated with the elimination of hy
droxyl groups [33]. The residual fuel caused the second weight loss step, 
which was 0.3 %, occurring between 400 and 800 ◦C. The last range of 
weight loss, at 800–1000 ◦C, resulted in the formation of crystalline 
NiFe2O4. A weight loss step of 0.1 % in the temperature range of 
25–150 ◦C is shown in Fig. 2(b). The residual fuel caused the second 
weight loss step, which was 0.1 % and occurred between 250 ◦C and 
800 ◦C. The last range of weight loss at 800–1000 ◦C temperature 
resulted in the formation of crystalline NiFe2O4. The sample in Fig. 2(c) 
displays weight loss steps of 0.1 % up to 600 ◦C, which corresponds to 
the removal of hydroxyl groups. The removal of leftover fuel caused a 
subsequent 0.3 % weight loss step, which was observed in the temper
ature range of 600–800 ◦C. The formation of crystalline NiFe2O4 was 
indicated by the final loss in the temperature range of 800–1000 ◦C [34]. 

Samples of pure and Eu3+ doped NFO NPs are depicted in the FESEM 
micrographs in Fig. 3. The micrograph images offered a comprehensive 
microstructural examination of the particle size, shape, and aggregation 
of the synthesized materials, and Fig. 3 (a)–(d) show densely packed 
nonuniform grains with large agglomerations of pure NFO NPs. The 
larger agglomerations with larger grain sizes enhanced the magnetic 
moments, and were related to their volume and agglomeration. 
Furthermore, because of their large agglomerations, the NFO material 
was permanently magnetized, the average grain size of the NPs ranged 
between 220 and 250 nm, and homogeneous grains were observed with 
RE Eu3+ oxide [26,35]. Thus, microstructural analysis was essential for 
comprehending the magnetic enhancement and had a direct impact on 
the electrical characteristics of the prepared NPs. Large grain sizes may 
alter the grain (Gs) and grain boundaries (GBs), thus consequently 
hindering the electric flow in MFe2O4 materials. Additionally, micro
graphs for each of the prepared samples demonstrate the development of 
cubic grains, essentially indicating that the grains managed to maintain 
their cubic shape during grain growth [36]. Furthermore, the EDAX 
measurements suggest that the synthesized Eu-doped NFO was stoi
chiometric and had a uniform distribution of elements because the 
average particle size slightly increased with the addition of Eu3+ at the 
Fe3+ site, is shown in Fig. 4 (a,b). The percentage of element present and 
the particle size are givenn in Table 2. 

The isothermal magnetic measurements [M(T)] obtained for pure 
and Eu3+ doped NFO NPs in the ZFC and FC modes with an externally μ0. 
H of 0.5 T are shown in Fig. 5. Fig. 5 illustrates the difference between 
the ZFC curve’s estimated magnetization of 6.13 emu.g− 1 at 5 K and the 
FC curve’s increasing magnetization value with decreasing temperature 
reaching 7.38 emu.g− 1 at 5 K. The disconnection of the ZFC and FC 
curves with decreasing temperature indicates the presence of a 
nonequilibrium magnetization state below 300 K for pure and doped 
materials, denoted as the Tirr (irreversibility temperature), at which the 
FC and ZFC curves diverge [9,10]. Furthermore, the FC curves revealed 
that increasing the temperature and decreasing the magnetization be
tween 5 and 300 K resulted in strong dipolar magnetostatic interactions 
between the individual μB for the entire composition. By contrast, the 
ZFC curves were strongly associated with the energy barrier distribution 
and high thermal Tirr. Furthermore, the Eu3+ doped NFO NPs exhibited 
the same trend as the pure material in that the magnetization value 
decreased as Eu3+ was added to the Fe3+ site. According to the differ
ences in the magnetization values in the FC (at 5 K) and ZFC (at 300 K) 
curves, the tetravalent nonmagnetic REE ions of Eu3+ attempted to 
partially replace the Fe3+ ions in the B-sites, which resulted in a net 
magnetization decrease because the substitution of Eu3+ has a lower μB 
(3.5 lB) than that of Fe3+ (5 lB), as listed in Table 3. Here, magnetization 
decreased owing to the μB of the REE (Eu3+) ions, which is typically 
accompanied by localized 4f-electrons. This is because the spins require 
more thermal energy to be released from the axis of the NPs, thus 
allowing for the alignment of μB with μ0.H, as the temperature is 
increased. Most of the saturation magnetization in MFe2O4 originates 
from the interactions between the cations in the A and B sites. Neel’s 
model of FI states that intra-sublattice A–A and B–B interactions are less 
important than A–B exchange interactions and the net magnetic moment 
arising from the difference between B of A and B sublattices, as the 

Table 1 
The structural parameters of the Eu3+ doped NiFe2O4.  

Eu3+ D (nm) a (Å) V (Å3) ρx 

(g/cm3) 
LA LB χ2 Rwp Rp 

Eu-0  33.4  8.26   564.43   5.42  3.57  2.92  3.9  20.4  31.5 

Eu-4  30.2   8.28   568.68  5.42  3.58  2.92  3.1  16.3  30.8 

Eu-8  29.1   8.30   573.30   5.50  3.59  2.93  3.3  34.9  30.7 

Eu-12  29.0  8.30  573.30  5.46  3.59  2.93  3.5  34.8  33.0  

Fig. 2. TGA analysis of Eu-doped NFO NPs (a-c) Eu = 0, 8, and 12.  
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moments of the A and B sublattices are in opposite directions [26]. In 
MFe2O4 materials, Fe3+ ions contribute to the magnetization of both the 
A and B sublattices, whereas Ni2+ and Eu3+ ions exclusively contribute 
to the magnetization of the B sublattice. In light of the aforementioned 
statement, the net μB is expected to decrease because of the preferential 
tenancy of Eu3+ ions toward B sites in the NFO spinel lattice to minimize 
Fe3+ ions. The results show that as the concentration of REE Eu3+ in
creases, the net magnetization decreases, which implies that the Fe 
(A)3+–O2––Eu(B)3+ super-exchange interactions are relatively weaker 
than the Fe(A)3+–O2–––Fe(B)3+ interactions [32]. 

Fig. 3. FESEM of Eu doped NFO NPs; (a) Eu = 0, (b) Eu = 4, (c) Eu = 8 and (d) Eu = 12.  

Fig. 4. EDAX and mapping of (a) Pure and (b) Eu = 12 NPs.  

Table 2 
EDAX analysis and particle size of NiFe2-xEuxO4.  

x (Eu3+) Ni 
at. % 

Fe 
at. % 

Eu 
at. % 

O 
at. % 

Particle Size (nm) 

Eu − 0  19.85  37.36 –  42.79 220 
Eu − 4  17.49  36.73 1.98  43.78 229 
Eu − 8  18.69  38.76 2.43  40.12 240 
Eu − 12  23.43  38.12 4.81  33.64 249  
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Fig. 6 shows the isothermal magnetization [M(H)] of Eu3+-doped 
NFO samples subjected to a magnetic field of 2 T at RT. Evidently, the 
magnitude of magnetization saturated around 0.5 T for all compositions 
and remained constant up to the maximum field of 2 T. The MS value was 
reduced by the doping of Eu3+ at the Fe3+ site, and the MS values for the 
pure and doped compositions were 48.42, 47.72, 45.27, and 43.15 emu. 
g− 1 for Eu = 0, 4, 8, and 12, respectively. The magnified version of Fig. 6 
(b) demonstrates that the decrease in Ms and increase in Eu3+ resulted 
from the changes that occurred at the spinel ferrite lattice sites as the 
REE oxide content increased. Similarly, doping with REE Nd3+ and Eu3+

oxide elements resulted in decreasing trends in the MS values 
[26,36,37]. In general, the ability of metal cations to occupy B and A 
sites varies depending on the ionic radii of the selected elements, and 
trivalent Fe3+ ions in the spinel lattice were replaced with higher ionic 
radii Eu3+ ions, thus influencing the magnetic exchange interactions and 
leading to changes in the magnetic properties of the preferred compo
sition. The magnetization of MFe2O4 NPs is generally determined by 
changes in the crystallite size, μB, and the occupancy site of the cation 
[35]. In addition, the magnetic behavior of MFe2O4 NPs is influenced by 
disordered metal cations and super exchange interactions, as well as by 
the composition of Eu3+-doped NFO. Further, trivalent Fe3+ ions, an 
important component in MFe2O4, typically form magnetic moments. 
Consequently, dopants may be able to replace Fe3+ ions (Eu3+–O–Fe3+) 
via 4f–3d couplings to affect the magnetic exchange interactions be
tween Fe3+–O–Fe3+ ions and incorporation of Eu3+ ions in the NFO 
spinel lattice. Therefore, the ionic radii of the elements play a significant 

role, and the A–B interactions between the REE oxides and MFe2O4 
lattice increase or decrease the magnetic properties of the prepared NPs. 
MFe2O4 NPs decreasing magnetization trend was attributed to replacing 
Fe3+ (0.64 Å) ions on the B sites with larger ionic radii Eu3+ (1.01 Å) 
ions, which was preferable for the A sites to be occupied by smaller ionic 
radii ions. The M(T) curve reveals the soft FM nature at both low and 
high temperatures, as confirmed from the M(H) curve for the pure and 
Eu-doped samples shown in the zoomed view of Fig. 6 (b) and (c). 
Subsequently, M(H) measurements of Eu3+-doped NFO were performed 
at lower and higher temperatures of 10, 100, 200, and 300 K in μ0. H =
2.5 T is shown in Fig. 7. The MS value increased for every composition as 
the temperature decreased, as represented by the M(T) FC curve. The MS 
value of pure and doped compositions were 53.71, 51.82, and 49.15 
emu.g− 1 [at 10 K] for Eu = 0, 8, and 12, respectively. The presence of a 
soft FM hysteresis loop at both lower and higher temperatures indicates 
that Eu doping at the Fe site confirms its soft FM nature. 

The magnetic properties of Ms, HC, Mr (magnetic remanence), and 
squareness ratio (Rs) values are listed in Table 4. The Mr values of the 
Eu-doped NPs ranged from 32.64 to 23.65 emu.g− 1 and Mr values 
decreased as the number of substituted elements (Eu3+) in NFO 
increased. The same behavior has been observed in Dy3+-doped NFO 
and Gd3+ doped CFO [37,38]. Additionally, the same pattern in Mr 
values was observed in the MS of the prepared NPs, thus indicating that 
Mr was dependent on both the MS of the synthesized NPs and the grain 
alignment induced by the super-exchange interactions among the 
MFe2O4 NPs. Furthermore, the HC of the material was a significant factor 
in the magnetic properties of the MFe2O4 NPs, and the values of HC for 
the Eu-doped samples were 96, 118, 126, and 140 Oe for Eu = 0, 4, 8, 
and 12, respectively. The HC increased with the concentration of Eu3+, 
which may be a result of the enhancement of magnetocrystalline 
anisotropy with anisotropic Fe2+ ions situated at tetrahedral sites [39]. 
Additionally, HC is considered to be a microstructural property and is 
influenced by a variety of elements, including the material’s surface 
effect, strains, nonmagnetic atoms, magnetic exchange interactions be
tween collinear spins and canted spins over the core, and material de
fects [40,41]. Furthermore, the parameter Rs was derived from the ratio 
of Mr/MS, and these values decreased as Eu increased at the Fe site. A 

Fig. 5. M(T) of Pure and Eu doped NFO NPs (a) Eu = 0, (b) Eu = 4, (c) Eu = 8 and (d) Eu = 12 at μ0.H = 0.5 T.  

Table 3 
The MS value at 5 K and 300 K from ZFC and FC curve.  

Temp 
K 

Eu − 0 Eu − 4 Eu − 8 Eu − 12 

FC 
emu. 
g− 1 

FC 
emu. 
g− 1 

FC 
emu. 
g− 1 

ZFC 
emu. 
g− 1 

FC 
emu. 
g− 1 

ZFC 
emu. 
g− 1 

FC 
emu. 
g− 1 

ZFC 
emu. 
g− 1 

5 K  7.39  6.13  6.96  5.29  5.71  3.39  4.94  3.10 
300 K  6.91  6.91  6.73  6.70  5.28  5.28  4.62  4.62  
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high value of Rs is generally preferred for the application of memory 
devices and recording media. Moreover, the presence of magnetostatic 
interactions in multi-domain NPs at RT is demonstrated by the Rs being 
greater than 0.5 for all compositions, and a higher Rs is indicative of a 
random orientation, similar to that of noninteracting NPs with cubic 

magnetocrystalline anisotropy [42–44]. Fig. 8 shows a graphic repre
sentation of Mr, MS, and Rs of the Eu-doped NFO NPs at RT. In general, 
the reduction in remanent magnetization (Mr) is faster than the reduc
tion in saturation magnetization (Ms) is commonly observed in magnetic 
materials and is often associated with factors such as magnetic domain 

Fig. 6. Isothermal curve of Eu doped NFO NPs (a) full view and (b-c) Zoomed view at μ0.H = 2.0 T.  

Fig. 7. Isothermal curve of Eu doped NFO NPs (a) Eu = 0, (b) Eu = 8, (c) Eu = 12 at lower and ambient temperature.  
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behavior, defects, and microstructural changes in the materials. 
The room temperature permittivity (ε’), imaginary part (ε’) of the 

dielectric, and loss factor (tan δ) for frequencies ranging from 100 Hz to 
2 MHz reveal that a common behavior occurred and the ε’ value 
decreased for the entire sample with an increase in frequency between 1 
kHz and 2 MHz, thus indicating the dielectric’s normal dispersion 
behavior, as shown in Fig. 9 (a). In general, ferrite materials are made up 
of strongly conducting grains (Gs) and poorly conducting grain bound
aries (GBs). Space charge polarization occurs when electrons accumu
late at the poorly conducting GBs, as a result, the value of ε′ is high at 
lower frequencies. The dielectric dispersion suggests the real dielectric 
constant varies significantly with frequency, which is supported by the 
Koop’s theory. According to Koop’s theory, the materials can be 
composed of two layers [10,45,46]. The first consists of highly con
ducting large layers of Gs (grains) separated by short and low con
ducting layers of GBs (grain boundaries). GB effects are dominant at 
lower frequencies, whereas Gs are effective at higher frequencies. Ac
cording to Koop’s theory, the dielectric structure has well-dielectric Gs 
with poorly separated GBs, and Maxwell–Wagner interfacial polariza
tion, which is in good agreement with Koop’s theory, leads to the 
observation of a higher value or dispersion of ε’ for the ferities at lower 
frequencies. Based on this theory, dispersion is influenced by the inho
mogeneous nature of the dielectric structure, which is intended to 
consist of two layers. The combined responses from the ionic, space 

charge, and interface polarizations are responsible for the observation of 
the maximum dielectric constant value in the lower frequency region, 
and interfacial polarization occurs when different conductivity phases 
coexist in the same material. The observation of an independent ε’ in the 
higher-frequency region implies that the dipole cannot be maintained 
with variations caused by changes in the applied electric field. Thus, the 
analysis suggests that the Gs are effective at higher frequency regions, 
whereas GBs are more effective for ε’ at lower frequency regions. The 
electron exchange between Fe2+ and Fe3+ ions is independent of the 
frequency of the applied AC electric field in MFe2O4, where the polari
zation in NFO is related to charge carrier hopping [47]. This may be 
because an increase in the frequency of the applied AC electric field 
caused the polarization to decrease. Hence, the analysis reveals that 
with the addition of Eu3+ at the Fe3+ site, the material’s ε’ decreased 
whereas the amount of nonmagnetic ions increased, and the doping of 
Eu3+ ions did not have a greater impact on the higher frequency region. 
Hence, when Eu3+ was added to the Fe3+ site, the increase in Eu3+

concentration changed some Fe3+ ions to Fe2+ to create charge 
neutrality, which may also be responsible for the decreased hopping 
between Fe3+ and Fe2+ ions and decrease in grain resistance, all of 
which contributed to the decrease in ε’ of the material. The ε” is plotted 
against frequencies at different temperatures in Fig. 9 (b). In the case of 
ε’, a similar pattern was obtained for ε” [48,49]. This is because polar
ization in a dielectric material is predominantly driven by dipole 
alignment, which is related to charge carrier movement in response to 
an electric field. Nonmagnetic Eu3+ ions have the ability to cause dipole 
alignment problems and impede polarization generation, which reduces 
the material’s total polarization. 

The ratio of ε” to ε’ of the dielectric constant can be used to express 
tan, δ which is generally used to describe energy losses, and here, δ 
(angle). According to Fig. 9 (c), the loss tangent had very low values 
across the entire temperature and frequency range, thus indicating an 
inherent property of the material. Typically, tan δ is attributed to the 
dipole polarization lag that occurs after the applied alternating field and 
might be caused by crystal lattice imperfections, GBs, and impurities of 
MFe2O4 [45]. Additionally, the frequency-dependent dispersion of tan δ, 
which also begins decreasing with the substitution of Eu3+, can be 
explained by the Maxwell–Wagner model. Thus, the density of the ma
terials plays a critical role in controlling the loss variations. As the 
presence of Gs in the low-frequency region typically corresponds to a 
high resistivity (reason GB) and vice versa, and because of the high 
energy needed for electron exchange between Fe2+ and Fe3+ ions in the 
low-frequency region, a loss in the material occurs [50,51]. Similarly, 
when the frequency is high, less energy is required for electron transfer 
between the two Fe ions at the B site, and at higher frequencies, the 
value of ε′′ decreases, thus indicating its suitability for use in high- 
frequency devices. 

Table 4 
Magnetic parameters for Eu3+ doped NiFe2O4 at 300 K. Fig. 1:  

Eu3+ Ms Mr Hc Rs 

Eu − 0  48.42  32.64 96  0.674 
Eu − 4  47.72  29.97 118  0.628 
Eu − 8  45.27  26.79 126  0.591 
Eu − 12  43.15  23.65 140  0.548  

Fig. 8. Graphical representation of MS, HC, and Rs of Eu doped NFO NPs.  

Fig. 9. (a) ε’, (b) ε” and (c) tan δ of Eu doped NFO NPs.  

P. Sivaprakash et al.                                                                                                                                                                                                                           



Materials Science & Engineering B 301 (2024) 117200

9

4. Conclusion 

Herein, the physical, electrical, and magnetic characteristics of Eu3+- 
doped NFO materials were analyzed using PXRD, FESEM, EDAX, and 
MPMS techniques. The PXRD analysis confirmed the lower Eu3+ sub
stitutions (Eu3+ = 4 and 8) and secondary phases of EuFe2O3 for higher 
substitution (Eu3+ = 12), and the change in ac revealed that the spinel 
lattice sites are responsible for the vacancies in MFe2O4. In addition, the 
higher ionic radii of Eu at sites with lower ionic radii of Fe seem to be 
due to changes in ac and crystalline size. The formation of nano
crystalline grains with a spherical morphology was revealed by micro
structural features, and the EDAX spectrum showed no evidence of 
contamination. The particle size obtained from the microstructural 
analysis increased with increasing ac because of the higher ionic radii of 
Eu3+. Further. Magnetic studies at both RT and lower temperatures 
unquestionably demonstrate that soft FM behavior and Ms and Mr 
values increased with increasing Eu concentration at RT, and that the 
decrease in RT magnetization resulted from large lattice distortions 
caused by Eu3+ ions and cation distribution at different sites. The 
decrease in ε’ and tan δ was caused by the reduced hopping rate that 
resulted from the substitution of Eu3+ ions for Fe3+ ions at the B sites. 
Thus, REE-doped ferrite NFO materials are extremely beneficial for a 
variety of applications in microwave devices and aerospace 
applications. 
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